Parte, Par.

  1  Mecc,  13   |                 una curva continua ABC (fig. 2), che sarà il diagramma
  2  Mecc,  13   |            secondo, rappresentati nella fig. 3 dai segmenti AB, CD, EF,
  3  Mecc,  13   |                misurato dall’area OACD (fig. 2), compresa tra gli assi,
  4  Mecc,  13   |            spazio sarà quindi misurato (fig. 3) dall’area del trapezio
  5  Mecc,  14   |              Così se mentre la sfera M (fig. 4) si muove lungo il piano
  6  Mecc,  21   |                molla o dai dinamometri (Fig. 7), consistenti in una molla
  7  Mecc,  24   |        apparecchino rappresentato dalla fig. 8. Dal punto O partono tre
  8  Mecc,  26   |           vertice A di una delle forze (fig. 9) si traccia la spezzata
  9  Mecc,  27   |             punto A di un corpo rigido (fig. 10) la forza AF. Ad essa
 10  Mecc,  29   |            medesime.~ ~Così se AP e BQ (fig. 11) sono le componenti,
 11  Mecc,  29   |        apparecchino rappresentato nella fig. 13.~ ~ Per sottrarre l’asticella
 12  Mecc,  30   |              cui agiscono le due forze (fig. 14); momento della coppia
 13  Mecc,  31   |               Si osservi intanto, nelle fig. 11 e 12, che il punto d’
 14  Mecc,  32   |                quanto si è visto sopra (fig. 15).~ ~Di tutte queste proposizioni,
 15  Mecc,  32   |                 dell’apparecchino della fig. 17.~ ~ L’asticella AB è
 16  Mecc,  33   |            punto B qualsiasi di questo (fig. 18), il corpo sarà in equilibrio
 17  Mecc,  33   |              Infine se due corpi A e B (fig. 19) hanno i pesi P e Q,
 18  Mecc,  34   |           orizzontale si projetta in C (fig. 20) e il centro di gravità
 19  Mecc,  34   |         capovolto nella posizione della fig. 21.~ ~ ~ Si riconosce però
 20  Mecc,  34   |           posizioni corrispondenti alle fig. 20 e 21. Nella prima se
 21  Mecc,  34   |          portarlo nella posizione della fig. 20. Si dice che quest’ultima
 22  Mecc,  36   |              potenza.~ ~ Nel caso della fig. 22 la potenza P è impiegata
 23  Mecc,  36   |              dicesi di  genere. Nella fig. 23 è rappresentata invece
 24  Mecc,  36   |                nella leva di  genere (fig. 24) è invece interposta
 25  Mecc,  36   |                  Nella carrucola fissa (fig. 25) le due forze che si
 26  Mecc,  36   |              uso dell’apparecchio della fig. 8 per la verifica del principio
 27  Mecc,  37   |                son collocati come nella fig. 26, in modo che i tre spigoli
 28  Mecc,  37   |              scala graduata, come nella fig. 27, che rappresenta una
 29  Mecc,  37   |              analoghi.~ ~Nella stadera (fig. 28), che è una leva a braccia
 30  Mecc,  39   |                due cubi A e B identici (fig. 29) sottoposti a due forze
 31  Mecc,  43   |                dinamica. — Sul punto B (fig. 30) agisca una forza dovuta
 32  Mecc,  45   |            Lungo un piano inclinato AB (fig. 31) senza attrito non tutto
 33  Mecc,  46   |                 piccolissima pesante M (fig. 32) sospesa mediante un
 34  Mecc,  48   |               movimento l’ultima ruota (fig. 33), detta di scappamento,
 35  Mecc,  49   |            lungo il piano inclinato AB (fig. 34); occorrerà un forza
 36  Mecc,  52   |                un esempio il caso della fig. 34 di un corpo mobile lungo
 37  Mecc,  62   |                 tal uopo il piezometro (fig. 35) nel quale l’ampolla
 38  Mecc,  63   |               in un vaso indeformabile (fig. 36), che comprende un cilindro
 39  Mecc,  63   |              perforando il recipiente, (fig. 38), si introduce fino in
 40  Mecc,  63   |                 il rapporto delle aree (fig. 39).~ ~Su questo principio
 41  Mecc,  65   |                  i due recipienti della fig. 40, nei quali il fondo è
 42  Mecc,  66   |              pratichiamo nel vaso della fig. 41 un’apertura in A, e vi
 43  Mecc,  66   |                A e B delle pareti nella fig. 41.~ ~Ma se, per un’apertura
 44  Mecc,  66   |               nell’arganetto idraulico (fig. 42) che gira appunto nel
 45  Mecc,  67   |          provata dall’apparecchio della fig. 43.~ ~Che se in due vasi
 46  Mecc,  67   |           comunicanti come quelli della fig. 44 si dispongono due liquidi
 47  Mecc,  68   |                in alto. — Il tubo della fig. 45 porta un fondo mobile
 48  Mecc,  69   |             detto bilancia idrostatica (fig. 46). A un piatto di questa
 49  Mecc,  71   |       picnometro. Una ampolla di vetro (fig. 47) munita di un collo sottile,
 50  Mecc,  71   |              degli apparecchi di vetro (fig. 48) aventi nel fondo una
 51  Mecc,  72   |                 il liquido circostante (fig. 49) che non ha perciò nelle
 52  Mecc,  72   |        costituendo un menisco convesso (fig. 50).~ ~ Immergendo un
 53  Mecc,  72   |               un tubo di vetro sottile (fig. 51) immerso nell’acqua questa
 54  Mecc,  72   |                 è immerso nel mercurio (fig. 52), questo si porta più
 55  Mecc,  73   |       risultante AR delle forze agenti (fig. 53 e 54) la quale sarà diretta
 56  Mecc,  76   |                 come nel crepavesciche (fig. 55) si diminuisce con la
 57  Mecc,  76   |                 potesse in un cilindro (fig. 56) applicare sul fondo
 58  Mecc,  77   |         Liberando l’orifizio inferiore (fig. 57) si constata che una
 59  Mecc,  78   |                nel barometro di Fortin (fig. 58) di rinchiudere la canna
 60  Mecc,  79   |              Nell’aneroide di Bourdon, (fig. 59), un tubo piegato ad
 61  Mecc,  79   |               nel barometro olosterico (fig. 60) una scatola chiusa e
 62  Mecc,  81   |                il gas in un recipiente (fig. 61) che comunica con un
 63  Mecc,  81   |                 vaschetta con mercurio (fig. 62), e sia a il dislivello
 64  Mecc,  82   |               serve l’apparecchio della fig. 63. Esso risulta essenzialmente
 65  Mecc,  84   |            manometri ad aria compressa (fig. 64) e ai manometri metallici (
 66  Mecc,  84   |                 ai manometri metallici (fig. 65). Nel manometro ad aria
 67  Mecc,  85   |             spinta serve il baroscopio (fig. 66) costituito da una bilancina
 68  Mecc,  85   |              son fondati gli aerostati (fig. 67) o i semplici palloni
 69  Mecc,  86   |               dei due recipienti A e B (fig. 68) messi in comunicazione
 70  Mecc,  87   |            cilindro C, corpo di tromba (fig. 69), è mobile uno stantuffo
 71  Mecc,  88   |                 nel modello più comune (fig. 70) la valvola z è sostituita
 72  Mecc,  88   |                pneumatica è il provino (fig. 71) costituito da un tubo
 73  Mecc,  89   |                  Una camera di vetro A (fig. 72) comunica, per mezzo
 74  Mecc,  90   |              esse è rappresentata nella fig. 73, che non ha bisogno di
 75  Mecc,  90   |   aspiranti-prementi, come quella della fig. 74 lo stantuffo non è forato.
 76  Mecc,  91   |                   Un recipiente chiuso (fig. 75) contiene un liquido
 77  Mecc,  92   |          livello più basso. Supponiamo (fig. 76) che il tubo-sifone sia
 78  Mecc,  95   |        aeriformi. — I due palloni della fig. 77 son pieni di due gas
 79     1,  99   |          esperienza rappresentata nella fig. 78. Strofinando la campana
 80     1,  99   |             specie d’imbuto, come nella fig. 79, e alla quale è fissata
 81     1,  99   |               per es., facciamo venire (fig. 80) da un cannello un getto
 82     1, 101   |              molla elastica, come nella fig. 81 e si dia un urto brusco,
 83     1, 101   |             serie, allineate come nella fig. 82, e separate da molle
 84     1, 102   |              nella serie di sfere della fig. 82, si fanno eseguire alla
 85     1, 103   |                parete ed A la sorgente (fig. 83). Un raggio come AO,
 86     1, 104   |                 curva come quella della fig. 84, che potrà avere una
 87     1, 104   |       sinusoidale e rappresentata nella fig. 85. Invece per le vibrazioni
 88     1, 105   |               con la sirena di Seebeck (fig. 80) e con quella di Cagniard-Latour.~ ~
 89     1, 105   |              sirena di Cagniard-Latour (fig. 86) un disco b, provveduto
 90     1, 106   |               di acciaio a due branche (fig. 87), che esegue esattamente
 91     1, 108   |              parte del punto di arrivo (fig. 88).~ ~Siano inoltre eguali
 92     1, 108   |                 con l’apparecchio della fig. 89, nel quale la sorgente
 93     1, 109   |              punto C compreso tra loro (fig. 90), provenendo così da
 94     1, 109   |                assumendo la forma delle fig. 91, 92, 93, dividendosi
 95     1, 111   |               provetta piuttosto lunga (fig. 94) il suono del primo sarà,
 96     1, 111   |          appunto, nell’esperienza della fig. 94, si può constatare che
 97     1, 111   |              suole fissare il diapason (fig. 87) ha appunto la funzione
 98     1, 114   |                risonatori di Helmholtz (fig. 95) i quali, come il tubo
 99     1, 114   |               quali, come il tubo della fig. 95, son capaci di rinforzare
100     1, 114   |            suono. Così la vibrazione C (fig. 96) risulta dalia composizione
101     1, 115   |               il fonautografo di Scott (fig. 79).~ ~Edison ebbe la felice
102     2, 117   |       costellazione dell’Orsa Maggiore (fig. 97), e quella dell’Orsa
103     2, 118   |              per i nostri paesi vale la fig. 98, nella quale PP' indica
104     2, 119   |                 con l’apparecchio della fig. 99. Facendo ruotare intorno
105     2, 119(3)|               poichè l’esperienza della fig. 99 dice non che il piano
106     2, 120   | sperimentalmente dall’apparecchio della fig. 100.~ ~Si noti che, come
107     2, 121   |                e sia il meridiano PEP' (fig. 101). Dato un punto A della
108     2, 122   |                 SLIA, detta ecclittica (fig. 102), taglia l’Equatore
109     2, 122   |                 una stella equatoriale (fig. 98) e perciò per tutti i
110     2, 122   |                Sole percorre l’arco AS (fig. 102) dell’emisfero celeste
111     2, 124   |                 Essa gode la proprietà (fig. 103) che la somma delle
112     2, 124   |          ellissi della figura.~ ~Sia O (fig. 104) la posizione del Sole,
113     2, 127   |                 del Sole è quella della fig.. 105, il Sole è allo zenit
114     2, 127   |              sarà invertita, come nella fig. 106. Per la calotta intorno
115     2, 128   |                detti fasi lunari. Nella fig. 107 è rappresentata in T
Best viewed with any browser at 800x600 or 768x1024 on Tablet PC
IntraText® (VA2) - Some rights reserved by EuloTech SRL - 1996-2009. Content in this page is licensed under a Creative Commons License