IntraText Indice | Parole: Alfabetica - Frequenza - Rovesciate - Lunghezza - Statistiche | Aiuto | Biblioteca IntraText | Cerca |
Alfabetica [« »] numeri 12 numerici 2 numerico 1 numero 101 numerose 1 numerosi 1 numeroso 2 | Frequenza [« »] 109 altro 102 corda 101 col 101 numero 101 un' 100 loro 99 4 | Pietro Blaserna La teoria del suono nei suoi rapporti colla musica Concordanze numero |
Conferenza
1 I| dimostrarvi con un certo numero di esempii, che il suono 2 I| si suddivide in un certo numero di parti sempre uguali, 3 I| grandezza, secondo Savart. Il numero delle figure stesse è assai 4 I| si suddivide in un certo numero di parti secondo regole 5 I| determinare il rapporto fra il numero delle vibrazioni delle nostre 6 I| è sempre composta di un numero di vibrazioni doppio di 7 III| arrivano quindi in maggior numero all'orecchio dell'osservatore. 8 III| arrivare a rinforzare un numero così grande di suoni da 9 III| da poter considerare tale numero quasi come infinito.~ ~Questo 10 IV| CONFERENZA.~ ~1. Misura del numero delle vibrazioni, metodo 11 IV| che l'altezza dipende dal numero delle vibrazioni, che un 12 IV| caratterizzati da piccolo numero, i suoni alti da grande 13 IV| i suoni alti da grande numero di vibrazioni.~ ~Per risolvere 14 IV| altra: come si determina il numero delle vibrazioni? Vi sono 15 IV| vibrazioni, e per conoscerne il numero non ho a fare altro, che 16 IV| il cilindro fa un altro numero qualunque di giri al secondo. 17 IV| determinazione sarà esatta, purchè il numero dei giri, che il cilindro 18 IV| col quale si misura il numero dei giri di un'apparecchio 19 IV| cilindro si trova un certo numero di fori tutti equidistanti, 20 IV| A. Questo disco porta un numero eguale di fori, per posizione 21 IV| quanto più grande è il numero dei fori sull'uno e sull' 22 IV| indicati soltanto otto, ma il numero è arbitrario]. Supponiamo 23 IV| secondo, per trovare il numero degli sbuffi d'aria prodotti 24 IV| dovremo moltiplicare il numero dei fori, che è di 25, per 25 IV| ecc. ed in generale per il numero dei giri, che il disco fa 26 IV| esterna delle vibrazioni, il numero delle quali corrisponde 27 IV| corrisponde evidentemente al numero degli urti ricevuti. Noi 28 IV| istesso tempo calcolare il numero delle vibrazioni corrispondenti, 29 IV| mezzo di determinare il numero dei giri, che l'istrumento 30 IV| determinare facilmente il numero dei giri, anche se sono 31 IV| vogliamo determinare il numero delle vibrazioni che corrisponde 32 IV| sirena, e determinare così il numero dei giri in un secondo.~ ~ 33 IV| giri. Per conoscere ora il numero delle vibrazioni, siccome 34 IV| possibilità di determinare il numero delle vibrazioni di moltissimi, 35 IV| percepisce come suono un numero qualunque di vibrazioni, 36 IV| rappresentata all'incirca da un numero di vibrazioni doppio di 37 IV| quale si arriva studiando il numero delle vibrazioni di una 38 IV| domanda, basta determinare il numero delle vibrazioni della corda 39 IV| crescono, per rapporto al numero dalle loro vibrazioni, come 40 IV| numeri semplici;~ ~2.] il numero delle vibrazioni di una 41 IV| breve, per determinare il numero delle vibrazioni di un suono. 42 IV| si tratti di conoscere il numero delle vibrazioni di un determinato 43 IV| 432 millimetri; siccome il numero delle vibrazioni è in ragione 44 IV| metodo di determinare il numero delle vibrazioni è il più 45 V| scegliere, fra l'enorme numero dei suoni possibili, un 46 V| dei suoni possibili, un numero infinitamente più ristretto, 47 V| sono rappresentati da ugual numero di vibrazioni. Noi diciamo 48 V| perfettamente il medesimo numero di vibrazioni. Succede allora 49 V| accada pure quando sono in numero di 20 e anche di 25 al secondo. 50 V| esattamente il medesimo numero di vibrazioni. Salvo qualche 51 V| battimenti al secondo; e il numero dei battimenti, molto facile 52 V| precisa della differenza nel numero delle vibrazioni dei due 53 V| suoni stanno, riguardo al numero delle vibrazioni, non esattamente 54 V| Supponiamo per esempio, che il numero delle loro vibrazioni stia 55 V| in questo senso, che il numero delle loro vibrazioni corrisponde 56 V| 50 vibrazioni al secondo, numero che è la quarta parte di 57 V| semplice per determinarli: il numero delle vibrazioni del suono 58 V| uguale alla differenza nel numero delle vibrazioni dei suoni 59 V| diversi suoni, anzicchè il numero assoluto delle loro vibrazioni, 60 V| quel suono, il quale fa un numero di vibrazioni doppio del 61 V| del primo. Raddoppiare il numero delle vibrazioni significa 62 V| viceversa. Così pure ridurre il numero delle vibrazioni a metà 63 V| ottava è rappresentata da un numero quadruplo, la terza ottava 64 V| quadruplo, la terza ottava da un numero otto volte maggiore di vibrazioni; 65 V| scientificamente parlando, nel numero 7, il quale non è più abbastanza 66 V| ha il torto di essere un numero primo. Siccome negli accordi 67 VI| destinato a misurare il numero dei giri, ove occorrano 68 VI| che il suono dipende dal numero degli sbuffi d'aria, che 69 VI| sbuffi saranno quindi in numero maggiore o minore, secondo 70 VI| battimenti, i quali sono in numero tale da corrispondere alla 71 VI| corrispondere alla differenza nel numero delle vibrazioni delle due 72 VI| unisono è indipendente dal numero assoluto delle vibrazioni.~ ~ 73 VI| ottava fa dunque sempre un numero doppio di vibrazioni. Se 74 VI| vede chiaramente, che il numero assoluto delle vibrazioni 75 VI| rapporti sono fissati dal numero dei fori, e il numero assoluto 76 VI| dal numero dei fori, e il numero assoluto delle vibrazioni 77 VI| sceltone uno a tale ufficio, il numero delle vibrazioni di tutti 78 VI| compongono, stiano riguardo al numero delle loro vibrazioni in 79 VII-VIII| conferenza, moltiplicare il numero delle sue vibrazioni per 80 VII-VIII| interno, hanno il seguente numero di fori:~ ~24, 27, 30, 32, 81 VII-VIII| 45, 48.~ ~Ora siccome il numero delle vibrazioni dei suoni, 82 VII-VIII| producono, è proporzionale al numero degli urti, e questi al 83 VII-VIII| degli urti, e questi al numero dei fori, ne segue, che 84 VII-VIII| suono, qualunque sia il numero delle sue vibrazioni, può 85 VII-VIII| loro, e che quindi anche un numero alquanto minore di tasti 86 VII-VIII| tentativi, per diminuire il numero soverchio di suoni, e per 87 VII-VIII| in alto, si raddoppia il numero delle vibrazioni e con ciò 88 VII-VIII| vibrazioni e con ciò anche il numero dei battimenti, i quali 89 IX| il quale porta un certo numero di finestre strette, otto 90 IX| diversa, secondo la forma e il numero delle curve semplici, che 91 IX| complicata, quanto maggiore è il numero e complicata la forma delle 92 IX| essere decomposta in un numero maggiore o minore di curve 93 IX| vibrazione semplice del medesimo numero, più in una di un numero 94 IX| numero, più in una di un numero doppio, più in una di un 95 IX| doppio, più in una di un numero triplo, quadruplo, quintuplo 96 IX| presenza, in maggiore o minore numero e grado, dei suoni armonici 97 IX| è indicato qui sotto al numero 1, e non mai come è indicato 98 IX| non mai come è indicato al numero 2, o al numero 3.~ ~ Potrebbe 99 IX| indicato al numero 2, o al numero 3.~ ~ Potrebbe parere strano, 100 X| musicale che vi regnava, ed al numero considerevole di veri uomini 101 X| Italia sorprese il mondo col numero di cantanti esimii che offrì,